Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters
نویسندگان
چکیده
BACKGROUND Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. RESULTS Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. CONCLUSIONS We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce.
منابع مشابه
Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملI-49: Human Y Chromosome ProteomeProject
The success of the Human Genome Project (HGP) has provided a blueprint for the approximately 20,000 gene-encoded proteins potentially active in all of the hundreds of cell types that make up the human body. Yet we still have limited knowledge about a majority of the gene-encoded proteins which are the “building blocks of life” and “cellular machinery”. It is estimated that for nearly half of th...
متن کاملEffect of Endophytic fungi in Festuca arundinaceae proteome pattern changes under drought stress
In this research, have been investigated the effects of endophytic fungi from Neotyphidum genius that has mandatory symbiosis with tall fescue (Festuca arundinacea schreb) and drought stress on changes in the protein profile of the tall fescue species. This process requires changes in the gene and protein expression profiles. Since these proteins have not been reported for tall fescue species. ...
متن کاملI-3: Human Y Chromosome Proteome Project 2012 Update
The Human Genome Project has generated a blueprint for the approximately 20,300 gene-encoded proteins potentially active in any of 230 cell types that make up the human body (human proteome). However, based on the UniProtKB/Swiss-Prot database content, about 6000 of at the protein level; for many others, there is very little information related to protein function, abundance, subcellular locali...
متن کاملمکانیسم مقاومت دارویی در سرطان
Some varieties of human cancers become resistant, or, are intrinsically resistant to treatment with conventional drug therapies. This phenomenon is due largely to over-expression of the ATP binding cassette, (ABC), super-family of membrane transporters. In this regard, 170 kDa plasma membrane ATP-dependent pump, known as P-glycoprotein are the most important. Other members of multi-drug resista...
متن کامل